As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Transfer learning has demonstrated its potential in natural language processing tasks, where models have been pre-trained on large corpora and then tuned to specific tasks. We applied pre-trained transfer models to a Spanish biomedical document classification task. The main goal is to analyze the performance of text classification by clinical specialties using state-of-the-art language models for Spanish, and compared them with the results using corresponding models in English and with the most important pre-trained model for the biomedical domain. The outcomes present interesting perspectives on the performance of language models that are pre-trained for a particular domain. In particular, we found that BioBERT achieved better results on Spanish texts translated into English than the general domain model in Spanish and the state-of-the-art multilingual model.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.