As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, an attempt has been made to analyze the influence of the frequencies bands in uterine electromyography (uEMG) signals on the detection of preterm birth. The signals recorded from the women’s abdomen during pregnancy are considered in this study. The signals are subjected to preprocessing using digital bandpass Butterworth filter and decomposed into different frequency bands namely, 0.3-1.0 Hz (F1), 1.0-2.0 Hz (F2) and 2.0-3.0Hz (F3). Spectral features namely, peak magnitude, peak frequency, mean frequency and median frequency are extracted from the power spectrum. Classification models namely, k-nearest neighbor, support vector machine and random forest are employed to distinguish the term and preterm conditions. The results show that the features extracted from these frequency bands are able to differentiate term and preterm condition. Particularly, the frequency band F3 performs better than other frequency bands. The features associated with these frequencies along with random forest classification model achieves a maximum accuracy of 75.2%. Thus, these measures could be used to accurately detect the preterm birth well in advance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.