As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents an application of deep neural networks (DNN) to identify patients with Alcohol Use Disorder based on historical electronic health records. Our methodology consists of four stages including data collection, preprocessing, predictive model development, and validation. Data are collected from two sources and labeled into three classes including Normal, Hazardous, and Harmful drinkers. Moreover, problems such as imbalanced classes, noise, and categorical variables were handled. A four-layer fully-connected feedforward DNN architecture was designed and developed to predict Normal, Hazardous, and Harmful drinkers. Results show that our proposed method could successfully classify about 96%, 82%, and 89% of Normal, Hazardous, and Harmful drinkers, respectively, which is better than classical machine learning approaches.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.