As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The aim of this study is to evaluate the use of a natural language processing (NLP) software to extract medication statements from unstructured medical discharge letters.
Methods:
Ten randomly selected discharge letters were extracted from the data warehouse of the University Hospital Erlangen (UHE) and manually annotated to create a gold standard. The AHD NLP tool, provided by MIRACUM’s industry partner was used to annotate these discharge letters. Annotations by the NLP tool where then compared to the gold standard on two levels: phrase precision (whether or not the whole medication statement has been identified correctly) and token precision (whether or not the medication name has been identified correctly within correctly discovered medication phrases).
Results:
The NLP tool detected medication related phrases with an overall F-measure of 0.852. The medication name has been identified correctly with an overall F-measure of 0.936.
Discussion:
This proof-of-concept study is a first step towards an automated scalable evaluation system for MIRACUM’s industry partner’s NLP tool by using a gold standard. Medication phrases and names have been correctly identified in most cases by the NLP system. Future effort needs to be put into extending and validating the gold standard.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.