As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The goal of this paper is to present a word-final target phoneme automated segmentation method based on cross-correlation coefficients computed between a reference sound wave and a sample sound wave. Most existing Speech Sound Disorder (SSD) Screening solutions require human intervention to a greater or lesser extent and use segmentation methods based on hard-coded time frames. Moreover, existing solutions extract features from the frequency domain, which entails large amounts of computational power to the detriment of real-time feedback. The pre-processing algorithm proposed in this paper, implemented in a Python version 3.7 script, automatically generates 2 new .wav files corresponding to the phonemes found in word-final position in the initial sound waves. The newly-generated .wav files are meant to be used as valid and homogeneous input in a subsequent classification stage aimed at rigorously discriminating mispronunciations of the target phoneme and assist Speech-Language Pathologists (SLPs) with the SSD screening.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.