As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Up to 80% of medical information is documented by unstructured data such as clinical reports written in natural language. Such data is called unstructured because the information it contains cannot be retrieved automatically as straightforward as from structured data. However, we assume that the use of this flexible kind of documentation will remain a substantial part of a patient’s medical record, so that clinical information systems have to deal appropriately with this type of information description. On the other hand, there are efforts to achieve semantic interoperability between clinical application systems through information modelling concepts like HL7 FHIR or openEHR. Considering this, we propose an approach to transform unstructured documented information into openEHR archetypes. Furthermore, we aim to support the field of clinical text mining by recognizing and publishing the connections between openEHR archetypes and heterogeneous phrasings. We have evaluated our method by extracting the values to three openEHR archetypes from unstructured documents in English and German language.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.