As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We applied an open source natural language processing (NLP) system “NimbleMiner” to identify clinical notes with mentions of alcohol and substance abuse. NimbleMiner allows users to rapidly discover clinical vocabularies (using word embedding model) and then implement machine learning for text classification. We used a large inpatient dataset with over 50,000 intensive care unit admissions (MIMIC II). Clinical notes included physician-written discharge summaries (n = 51,201) and nursing notes (n = 412,343). We first used physician-written discharge summaries to train the system’s algorithm and then added nursing notes to the physician-written discharge summaries and evaluated algorithms prediction accuracy. Adding nursing notes to the physician-written discharge summaries resulted in almost two-fold vocabulary expansion. NimbleMiner slightly outperformed other state-of-the-art NLP systems (average F-score = .84), while requiring significantly less time for the algorithms development.: Our findings underline the importance of nursing data for the analysis of electronic patient records.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.