As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
PICO (Population/problem, Intervention, Comparison, and Outcome) is widely adopted for formulating clinical questions to retrieve evidence from the literature. It plays a crucial role in Evidence-Based Medicine (EBM). This paper contributes a scalable deep learning method to extract PICO statements from RCT articles. It was trained on a small set of richly annotated PubMed abstracts using an LSTM-CRF model. By initializing our model with pretrained parameters from a large related corpus, we improved the model performance significantly with a minimal feature set. Our method has advantages in minimizing the need for laborious feature handcrafting and in avoiding the need for large shared annotated data by reusing related corpora in pretraining with a deep neural network.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.