As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Ship parametric roll is one of the main reasons for marine accidents and is introduced into the second-generation intact stability criteria by the International Maritime Organization (IMO) recently. In this paper, a 6-DOF three-dimensional time-domain model based on the IRF (Impulse Response Function) method is constructed to predict large-amplitude ship motions and investigate the phenomenon of parametric roll in head waves as well as major factors. The F-K forces and the restoring forces are calculated on the instantaneous wet surface while the radiation and diffraction forces are kept linear and transformed from frequency-domain results calculated with the three-dimensional Havelock form translating-pulsating source green function method. The proposed weakly nonlinear time-domain model is used to simulate motions of the C11 containership, which predicts the occurrence of the parametric roll successfully and shows a good agreement with the experimental data in amplitude. The inner mechanism of parametric roll is revealed by investigating the time-history and resonance frequencies of restoring forces and coefficients numerically.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.