As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Image segmentation for detecting illegal landfill waste in aerial images is essential for environmental crime monitoring. Despite advancements in segmentation models, the primary challenge in this domain is the lack of annotated data due to the unknown locations of illegal waste disposals. This work mainly focuses on evaluating segmentation models for identifying individual illegal landfill waste segments using limited annotations. This research seeks to lay the groundwork for a comprehensive model evaluation to contribute to environmental crime monitoring and sustainability efforts by proposing to harness the combination of agnostic segmentation and supervised classification approaches. We mainly explore different metrics and combinations to better understand how to measure the quality of this applied segmentation problem.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.