As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The distribution of fuel gases is undergoing major changes due to decarbonization efforts: Non-fossil gases such as biomethane or renewable hydrogen can lead to the reuse of existing gas infrastructure for gas storage, transport, and distribution to reduce greenhouse gas emissions while maintaining a high energy security. For safe and efficient operation, we propose Gas Grid Copilot (GGC) as a demonstrator of a multi-objective reinforcement learning agent that trains in a simulated gas grid environment to control a grid by modifying its inflow into a mass storage. Multiple, possibly conflicting reward signals are included. Their conflicts and synergies of rewards are analyzed using techniques from multi-criteria decision making, more specifically a conflict interaction matrix based on extended fuzzy logic. That way, dispatchers of a gas grid can explore the effects of reward prioritizations and their consequences safely.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.