As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we tackle the problem of planning in complex numerical domains, where actions are indexed by control parameters, and their effects may be described by neural networks. We propose a lazy, hierarchical approach based on two ingredients. First, a Satisfiability Modulo Theory solver looks for an abstract plan where the neural networks in the model are abstracted into uninterpreted functions. Then, we attempt to concretize the abstract plan by querying the neural network to determine the control parameters. If the concretization fails and no valid control parameters could be found, suitable information to refine the abstraction is lifted to the Satisfiability Modulo Theory model. We contrast our work against the state of the art in NN-enriched numerical planning, where the neural network is eagerly and exactly represented as terms in Satisfiability Modulo Theories over nonlinear real arithmetic. Our systematic evaluation on four different planning domains shows that avoiding symbolic reasoning about the neural network not only leads to substantial efficiency improvements, but also enables their integration as black-box models.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.