As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present a new approach to goal recognition that involves comparing observed facts with their expected probabilities. These probabilities depend on a specified goal g and initial state s0. Our method maps these probabilities and observed facts into a real vector space to compute heuristic values for potential goals. These heuristic values estimate the likelihood of a given goal being the true objective of the observed agent. As obtaining exact expected probabilities for observed facts in an observation sequence is often practically infeasible, we propose and empirically validate a method for approximating these probabilities. Our empirical results show that the proposed approach offers improved goal recognition precision compared to state-of-the-art techniques while reducing computational complexity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.