As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
CNOT optimization plays a significant role in noise reduction for Quantum Circuits. Several heuristic and exact approaches exist for CNOT optimization. In this paper, we investigate more complicated variations of optimal synthesis by allowing qubit permutations and handling layout restrictions. We encode such problems into Planning, SAT, and QBF. We provide optimization for both CNOT gate count and circuit depth. For experimental evaluation, we consider standard T-gate optimized benchmarks and optimize CNOT sub-circuits. We show that allowing qubit permutations can further reduce up to 56% in CNOT count and 46% in circuit depth. In the case of optimally mapped circuits under layout restrictions, we observe a reduction up to 17% CNOT count and 19% CNOT depth.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.