As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we study the Multi-Objective Bi-Level Optimization (MOBLO) problem, where the upper-level subproblem is a multi-objective optimization problem and the lower-level subproblem is for scalar optimization. Existing gradient-based MOBLO algorithms need to compute the Hessian matrix, causing the computational inefficient problem. To address this, we propose an efficient first-order multi-gradient method for MOBLO, called FORUM. Specifically, we reformulate MOBLO problems as a constrained multi-objective optimization (MOO) problem via the value-function approach. Then we propose a novel multi-gradient aggregation method to solve the challenging constrained MOO problem. Theoretically, we provide the complexity analysis to show the efficiency of the proposed method and a non-asymptotic convergence result. Empirically, extensive experiments demonstrate the effectiveness and efficiency of the proposed FORUM method in different learning problems. In particular, it achieves state-of-the-art performance on three multi-task learning benchmark datasets. The code is available at unmapped: uri https://github.com/Baijiong-Lin/FORUM.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.