As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Long-term time series forecasting in centralized environments poses unique challenges regarding data privacy, communication overhead, and scalability. To address these challenges, we propose FedTime, a federated large language model (LLM) tailored for long-range time series prediction. Specifically, we introduce a federated pre-trained LLM with fine-tuning and alignment strategies. Prior to the learning process, we employ K-means clustering to partition edge devices or clients into distinct clusters, thereby facilitating more focused model training. We also incorporate channel independence and patching to better preserve local semantic information, ensuring that important contextual details are retained while minimizing the risk of information loss. We demonstrate the effectiveness of our FedTime model through extensive experiments on various real-world forecasting benchmarks, showcasing substantial improvements over recent approaches. In addition, we demonstrate the efficiency of FedTime in streamlining resource usage, resulting in reduced communication overhead.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.