As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
While transformers have gained recognition as a versatile tool for artificial intelligence (AI), an unexplored challenge arises in the context of chess — a classical AI benchmark. Here, incorporating Vision Transformers (ViTs) into AlphaZero is insufficient for chess mastery, mainly due to ViTs’ computational limitations. The attempt to optimize their efficiency by combining MobileNet and NextViT outperformed AlphaZero by about 30 Elo. However, we propose a practical improvement that involves a simple change in the input representation and value loss functions. As a result, we achieve a significant performance boost of up to 180 Elo points beyond what is currently achievable with AlphaZero in chess. In addition to these improvements, our experimental results using the Integrated Gradient technique confirm the effectiveness of the newly introduced features.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.