As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Federated Learning (FL) is a distributed machine learning paradigm facilitating participants to collaboratively train a model without revealing their local data. However, when FL is deployed into the wild, some intelligent clients can deliberately deviate from the standard training process to make the global model inclined toward their local model, thereby prioritizing their local data distribution. We refer to this novel category of misbehaving clients as selfish. In this paper, we propose a Robust aggregation strategy for the FL server to mitigate the effect of Selfishness (in short RFL-Self). RFL-Self incorporates an innovative method to recover (or estimate) the true updates of selfish clients from the received ones, leveraging robust statistics (median of norms) of the updates at every round. By including the recovered updates in aggregation, our strategy offers strong robustness against selfishness. Our experimental results, obtained on MNIST and CIFAR-10 datasets, demonstrate that just 2% of clients behaving selfishly can decrease the accuracy by up to 36%, and RFL-Self can mitigate that effect without degrading the global model performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.