As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Finding suitable embeddings for connectomes (spatially embedded complex networks that map neural connections in the brain) is crucial for analyzing and understanding cognitive processes. Recent studies have found two-dimensional hyperbolic embeddings superior to Euclidean embeddings in modeling connectomes across species, especially human connectomes. However, those studies had limitations: geometries other than Euclidean, hyperbolic, or spherical were not considered. Following William Thurston’s suggestion that the networks of neurons in the brain could be successfully represented in Solv geometry, we study the goodness-of-fit of the embeddings for 21 connectome networks (8 species). To this end, we suggest an embedding algorithm based on Simulating Annealing that allows us to embed connectomes to Euclidean, Spherical, Hyperbolic, Solv, Nil, and product geometries. Our algorithm tends to find better embeddings than the state-of-the-art, even in the hyperbolic case. Our findings suggest that while three-dimensional hyperbolic embeddings yield the best results in many cases, Solv embeddings perform reasonably well.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.