As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Diffusion models have emerged as effective tools for generating diverse and high-quality content. However, their capability in high-resolution image generation, particularly for panoramic images, still faces challenges such as visible seams and incoherent transitions. In this paper, we propose TwinDiffusion, an optimized framework designed to address these challenges through two key innovations: the Crop Fusion for quality enhancement and the Cross Sampling for efficiency optimization. We introduce a training-free optimizing stage to refine the similarity of adjacent image areas, as well as an interleaving sampling strategy to yield dynamic patches during the cropping process. A comprehensive evaluation is conducted to compare TwinDiffusion with the prior works, considering factors including coherence, fidelity, compatibility, and efficiency. The results demonstrate the superior performance of our approach in generating seamless and coherent panoramas, setting a new standard in quality and efficiency for panoramic image generation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.