As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Fairness is a popular research topic in recent years. A research topic closely related to fairness is bias and debiasing. Among different types of bias problems, position bias is one of the most widely encountered symptoms. Position bias means that recommended items on top of the recommendation list has a higher likelihood to be clicked than items on bottom of the same list. To mitigate this problem, we propose to use regularization technique to reduce the bias effect. In the experiment section, we prove that our method is superior to other modern algorithms.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.