As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Maintenance plays a significant role in semiconductor manufacturing as plant yield, factory downtime and operation cost are all closely related to maintenance efficiency. Accordingly, maintenance strategies in semiconductor manufacturing industries are increasingly shifting from traditional preventive maintenance (PM) to more efficient predictive maintenance (PdM). PdM uses manufacturing process data to develop predictive models for remaining useful life (RUL) estimation of key equipment components. Traditional approaches to building predictive models for RUL estimation involve manual selection of features from manufacturing process data. This paper proposes to use deep convolutional neural networks (CNN) for the task of estimating RUL of lenses for an ion beam etch tool in semiconductor manufacturing. The proposed approach has the advantage of automatic feature extraction through the use of convolution and pool filters along the temporal dimension of the optical emission spectroscopy (OES) data from the endpoint detection system. Simulation studies demonstrate the feasibility and the effectiveness of the proposed approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.