As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The minimization of propositional formulae is a classical problem in logic, whose first algorithms date back at least to the 1950s with the works of Quine and Karnaugh. Most previous work in the area has focused on obtaining minimal, or quasi-minimal, formulae in conjunctive normal form (CNF) or disjunctive normal form (DNF), with applications in hardware design. In this paper, we are interested in the problem of obtaining an equivalent formula in any format, also allowing connectives that are not present in the original formula. We are primarily motivated in applying minimization algorithms to generate natural language translations of the original formula, where using shorter equivalents as input may result in better translations. Buchfuhrer and Umans have proved that the (decisional version of the) problem is Σp2-complete. We analyze three possible (practical) approaches to solving the problem. First, using brute force, generating all possible formulae in increasing size and checking if they are equivalent to the original formula by testing all possible variable assignments. Second, generating the Tseitin coding of all the formulae and checking equivalence with the original using a SAT solver. Third, encoding the problem as a Quantified Boolean Formula (QBF), and using a QBF solver. Our results show that the QBF approach largely outperforms the other two.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.