

Federated Learning (FL) allows massive clients to collaboratively train a global model without revealing their private data. Because of the participants’ not independently and identically distributed (non-IID) statistical characteristics, it will cause divergence among the client’s Deep Neural Network model weights and require more communication rounds before training can be converged. Moreover, models trained from non-IID data may also extract biased features and the rationale behind the model is still not fully analyzed and exploited. In this paper, we propose eXplainable-Fed (XFed) which is a novel client selection mechanism that takes both accuracy and explainability into account. Specifically, XFed selects participants in each round based on a small test set’s accuracy via cross-entropy loss and interpretability via XAI-accuracy. XAI-accuracy is calculated by Intersection over Union Ratio between the heat map and the truth mask to evaluate the overall rationale of accuracy. The results of our experiments show that our method has comparable accuracy to state-of-the-art methods specially designed for accuracy while increasing explainability by 14%-35% in terms of rationality.