As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Agent Scheduling Problems (ASPs) are common in various real-world situations, requiring explainable decision-making processes to effectively allocate resources to multiple agents while fostering understanding and trust. To address this need, this paper presents a logic-based framework for providing explainable decisions in ASPs. Specifically, the framework addresses two types of queries: reason-seeking queries, which explain the reasoning behind scheduling decisions, and modification-seeking queries, which offer guidance on making infeasible decisions feasible. Acknowledging the importance of privacy in multi-agent scheduling, we introduce a privacy-loss function that measures the disclosure of private information in explanations, enabling a privacy-preserving aspect in our framework. By using this function, we introduce the notion of privacy-aware explanations and present an algorithm for computing them. Empirical evaluations demonstrate the effectiveness and versatility of our approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.