As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Accurately credit default prediction faces challenges due to imbalanced data and low correlation between features and labels. Existing default prediction studies on the basis of gradient boosting decision trees (GBDT), deep learning techniques, and feature selection strategies can have varying degrees of success depending on the specific task. Motivated by this, we propose Tab-Attention, a novel self-attention-based stacked generalization method for credit default prediction. This approach ensembles the potential proprietary knowledge contributions from multi-view feature spaces, to cope with low feature correlation and imbalance. We organize multi-view feature spaces according to the latent linear or nonlinear strengths between features and labels. Meanwhile, the f1 score assists the model in imbalance training to find the optimal state for identifying minority default samples. Our Tab-Attention achieves superior Recall1 and f11 of default intention recognition than existing GBDT-based models and advanced deep learning by about 32.92% and 16.05% on average, respectively, while maintaining outstanding overall performance and prediction performance for non-default samples. The proposed method could ensemble essential knowledge through the self-attention mechanism, which is of great significance for a more robust future prediction system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.