As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The diffusion model has demonstrated impressive performance in image generation, but its potential for discriminative tasks such as instance segmentation remains unexplored. In this paper, we propose an Instance-aware Diffusion Implicit Process (IDIP) framework for instance segmentation based on boxes. During training, IDIP diffuses ground-truth boxes across various time steps, extracting corresponding Region of Interest (RoI) features. Dynamic convolution is then used to predict boxes and categories for each RoI, and the mask head generates masks from these predictions. During inference, IDIP iteratively refines randomly generated boxes with the denoising diffusion implicit model, while the mask head derives final masks from RoIs based on the refined boxes. Our method surpasses existing approaches on the COCO benchmark, requiring fewer training steps and less memory resources due to its dynamic design and instance-aware characteristic.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.