As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In Multi-Agent Systems (MAS), Multi-Agent Path Finding (MAPF) is the problem of finding a conflict-free plan for a group of agents from a set of starting points to a set of target points. Deviations from this plan are standard in real-world applications and may decrease overall system efficiency and even lead to accidents and deadlocks. In large MAS scenarios with physical robots, multiple faulty events occur over time, contributing to the overall degraded system performance. This raises the main problem we address in this work: how to attribute blame for a degraded MAS performance over a set of faulty events. We formally define this problem and propose using the Shapley values to solve it. Then, we propose an algorithm that efficiently approximates Shapley values by considering only some subsets of faulty events set. We analyze this algorithm theoretically and experimentally and demonstrate that it enables effectively trading off runtime for error.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.