As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Lexical simplification (LS) methods based on pretrained language models have made remarkable progress, generating potential substitutes for a complex word through analysis of its contextual surroundings. However, these methods require separate pretrained models for different languages and disregard the preservation of sentence meaning. In this paper, we propose a novel multilingual LS method via paraphrase generation, as paraphrases provide diversity in word selection while preserving the sentence’s meaning. We regard paraphrasing as a zero-shot translation task within multilingual neural machine translation that supports hundreds of languages. After feeding the input sentence into the encoder of paraphrase modeling, we generate the substitutes based on a novel decoding strategy that concentrates solely on the lexical variations of the complex word. Experimental results demonstrate that our approach surpasses BERT-based methods and zero-shot GPT3-based method significantly on English, Spanish, and Portuguese.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.