As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
One of the main challenges in machine learning is providing understandable explanations for complex models. Despite outperforming humans in many tasks, machine learning models are often treated as black boxes that are difficult to interpret. Post-hoc explanation methods have been developed to create interpretable surrogate models that explain the behavior of black-box models. However, these methods have been shown to perpetuate bad practices and lack stability. Recently, inherent explainable approaches have been proposed to provide built-in explainability to models. However, most of these methods sacrifice performance. This paper proposes the Neural Architecture Search for Explainable Networks (NASXNet) approach to address the trade-off between performance and interpretability. Our method applies architecture search to generate high-performance and explainable neural networks for image classification tasks. We conduct experiments on four datasets: CUB-200-2011, Stanford Cars, CIFAR 10, and CIFAR 100. The results demonstrate that our models provide a high-level interpretation of prediction results, achieving state-of-the-art performance that is on par with non-explainable models. This paper contributes by solving the trade-off problem between performance and interpretability. It is the first to apply neural architecture search to develop explainable deep learning models, generating state-of-the-art explainable models that outperform existing approaches. Additionally, a new training process is proposed that enables faster convergence during model training.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.