As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Gradient clipping is a commonly used technique to stabilize the training process of neural networks. A growing body of studies has shown that gradient clipping is a promising technique for dealing with the heavy-tailed behavior that emerged in stochastic optimization as well. While gradient clipping is significant, its theoretical guarantees are scarce. Most theoretical guarantees only provide an in-expectation analysis and only focus on optimization performance. In this paper, we provide high probability analysis in the non-convex setting and derive the optimization bound and the generalization bound simultaneously for popular stochastic optimization algorithms with gradient clipping, including stochastic gradient descent and its variants of momentum and adaptive stepsizes. With the gradient clipping, we study a heavy-tailed assumption that the gradients only have bounded α-th moments for some α ∈ (1, 2], which is much weaker than the standard bounded second-moment assumption. Overall, our study provides a relatively complete picture for the theoretical guarantee of stochastic optimization algorithms with clipping.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.