As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, we propose SENA, a run-time monitor focused on detecting unreliable predictions from machine learning (ML) classifiers. The main idea is that instead of trying to detect when an image is out-of-distribution (OOD), which will not always result in a wrong output, we focus on detecting if the prediction from the ML model is not reliable, which will most of the time result in a wrong output, independently of whether it is in-distribution (ID) or OOD. The verification is done by checking the similarity between the neural activations of an incoming input and a set of representative neural activations recorded during training. SENA uses information from true-positive and false-negative examples collected during training to verify if a prediction is reliable or not. Our approach achieves results comparable to state-of-the-art solutions without requiring any prior OOD information and without hyperparameter tuning. Besides, the code is publicly available for easy reproducibility at https://github.com/raulsenaferreira/SENA.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.