As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Automated planning research often focuses on developing new algorithms to improve the computational performance of planners, but effective implementation can also play a significant role. Hardware features such as memory hierarchy can yield substantial running time improvements when optimized. In this paper, we propose two state-reordering techniques for the Topological Value Iteration (TVI) algorithm. Our first technique organizes states in memory so that those belonging to the same Strongly Connected Component (SCC) are contiguous, while our second technique optimizes state value propagation by reordering states within each SCC. We analyze existing planning algorithms with respect to their cache efficiency and describe domain characteristics which can provide an advantage to each of them. Empirical results show that, in many instances, our new algorithms, called eTVI and eiTVI, run several times faster than traditional VI, TVI, LRTDP and ILAO* techniques.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.