As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Considering that an accurate detection of infected mosquitos may directly avoid the propagation of mosquito-borne disease; in this paper, we propose a detection system of infected mosquitos by Dengue virus type II, that uses seven spectral feature measures, which are applied to the spectrogram estimated from wingbeat signal emitted by mosquito’s flight. To evaluate the proposed system, we construct our own dataset with 20 infected Aedes aegypti by Dengue and 20 healthy ones. Seven spectral analysis methods, such as Spectral Rolloff, Spectral Centroide, etc., are applied to the spectrogram obtained by using the Short Time Fourier Transform (STFT) to generate feature vectors with 15 elements. These are feed into common machine learning techniques, such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Logistic Regression to detect the infected mosquitos differentiating form the healthy ones. Evaluation results show that, the best detection accuracy (84.32%) is provided by the KNN with K=3.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.