As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Abstract Argumentation is a key formalism to resolve conflicts in incomplete or inconsistent knowledge bases. Argumentation Frameworks (AFs) and extended versions thereof turned out to be a fruitful approach to reason in a flexible and intuitive setting. The addition of collective attacks, we refer to this class of frameworks as SETAFs, enriches the expressiveness and allows for compacter instantiations from knowledge bases, while maintaining the computational complexity of standard argumentation frameworks. This means, however, that standard reasoning tasks are intractable and worst-case runtimes for known standard algorithms can be exponential. In order to still obtain manageable runtimes, we exploit graph properties of these frameworks. In this paper, we initiate a parameterized complexity analysis of SETAFs in terms of the popular graph parameter treewidth. While treewidth is well studied in the context of AFs with their graph structure, it cannot be directly applied to the (directed) hypergraphs representing SETAFs. We thus introduce two generalizations of treewidth based on different graphs that can be associated with SETAFs, i.e., the primal graph and the incidence graph. We show that while some of these notions allow for parameterized tractability results, reasoning remains intractable for other notions, even if we fix the parameter to a small constant.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.