As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The main purpose of the intelligent question answering system based on the knowledge graph is to accurately match the natural language question and the triple information in the knowledge graph. Among them, the entity recognition part is one of the key points. The wrong entity recognition result will cause the error to be done propagated, resulting in the ultimate failure to get the correct answer. In recent years, the lexical enhancement structure of word nodes combined with word nodes has been proved to be an effective method for Chinese named entity recognition. In order to solve the above problems, this paper proposes a vocabulary-enhanced entity recognition algorithm (KGFLAT) based on FLAT for intelligent question answering system. This method uses a new dictionary that combines the entity information of the knowledge graph, and only uses layer normalization for the removal of residual connection for the shallower network model. The system uses data provided by the NLPCC 2018 Task7 KBQA task for evaluation. The experimental results show that this method can effectively solve the entity recognition task in the intelligent question answering system and achieve the improvement of the FLAT model, and the average F1 value is 94.72
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.