As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The general purpose of this paper is to propose a distributed version of frequent closed itemsets extraction in the context of big data. The goal is to have good performances of frequent closed itemsets extraction as frequent closed item-sets are bases for frequent itemsets. To achieve this goal, we have extended the Galois lattice technique (or concept lattice) in this context. Indeed, Galois lattices are an efficient alternative for extracting closed itemsets which are interesting approaches for generating frequent itemsets. Thus we proposed Dist Frequent Next Neighbour which is a distributed version of the Frequent Next Neighbour concept lattice construction algorithm, which considerably reduces the extraction time by parallelizing the computation of frequent concepts (closed itemsets).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.