As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Prostate cancer is the most common malignant male tumor. Magnetic Resonance Imaging (MRI) plays a crucial role in the detection, diagnosis, and treatment of prostate cancer diseases. Computer-aided diagnosis systems can help doctors to analyze MRI images and detect prostate cancer earlier. One of the key stages of prostate cancer CAD systems is the automatic delineation of the prostate. Deep learning has recently demonstrated promising segmentation results with medical images. The purpose of this paper is to compare the state-of-the-art of deep learning-based approaches for prostate delineation in MRI images and discussing their limitations and strengths. Besides, we introduce a promising perspective for prostate tumor classification in MRI images. This perspective includes the use of the best segmentation model to detect the prostate tumors in MRI images. Then, we will employ the segmented images to extract the radiomics features that will be used to discriminate benign or malignant prostate tumors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.