As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper introduces a method called SUmmarisation with Majority Opinion (SUMO) that integrates and extends two prior approaches for abstractively and extractively summarising UK House of Lords cases. We show how combining two previously distinct lines of work allows us to better address the challenges resulting from this court’s unusual tradition of publishing the opinions of multiple judges with no formal statement of the reasoning (if any) agreed by a majority. We do this by applying natural language processing and machine learning, Conditional Random Fields (CRFs), to a data set we created by fusing together expert-annotated sentence labels from the HOLJ corpus of rhetorical role summary relevance with the ASMO corpus of agreement statement and majority opinion. By using CRFs and a bespoke summary generator on our enriched data set, we show a significant quantitative F1-score improvement in rhetorical role and relevance classification of 10–15% over the state-of-the-art SUM system; and we show a significant qualitative improvement in the quality of our summaries, which closely resemble gold-standard multi-judge abstracts according to a proof-of-principle user study.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.