As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In recent years, electricity big data has extensive applications in the grid companies across the provinces. However, certain problems are encountered including, the inability to generate an ideal model using the isolated data possessed by each company, and the priority concerns for data privacy and safety during big data application and sharing. In this pursuit, the present research envisaged the application of federated learning to protect the local data, and to build a uniform model for different companies affiliated to the State Grid. Federated learning can serve as an essential means for realizing the grid-wide promotion of the achievements of big data applications, while ensuring the data safety.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.