As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Texts obtained from web are noisy and do not necessarily follow the orthographic sentence and word boundary rules. Thus, sentence segmentation and word tokenization systems that have been developed on well-formed texts might not perform so well on unedited web texts. In this paper, we first describe the manual annotation of sentence boundaries of an Estonian web dataset and then present the evaluation results of three existing sentence segmentation and word tokenization systems on this corpus: EstNLTK, Stanza and UDPipe. While EstNLTK obtains the highest performance compared to other systems on sentence segmentation on this dataset, the sentence segmentation performance of Stanza and UDPipe remains well below the results obtained on the more well-formed Estonian UD test set.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.