As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Potential Based Reward Shaping combined with a potential function based on appropriately defined abstract knowledge has been shown to significantly improve learning speed in Reinforcement Learning. MultiGrid Reinforcement Learning (MRL) has further shown that such abstract knowledge in the form of a potential function can be learned almost solely from agent interaction with the environment. However, we show that MRL faces the problem of not extending well to work with Deep Learning. In this paper we extend and improve MRL to take advantage of modern Deep Learning algorithms such as Deep Q-Networks (DQN). We show that DQN augmented with our approach perform significantly better on continuous control tasks than its Vanilla counterpart and DQN augmented with MRL.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.