As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In data mining, finding interesting patterns is a challenging task. Constraint-based mining is a well-known approach to this, and one for which constraint programming has been shown to be a well-suited and generic framework. Constraint dominance programming (CDP) has been proposed as an extension that can capture an even wider class of constraint-based mining problems, by allowing us to compare relations between patterns. In this paper we improve CDP with the ability to specify an incomparability condition. This allows us to overcome two major shortcomings of CDP: finding dominated solutions that must then be filtered out after search, and unnecessarily adding dominance blocking constraints between incomparable solutions. We demonstrate the efficacy of our approach by extending the problem specification language ESSENCE and implementing it in a solver-independent manner on top of the constraint modelling tool CONJURE. Our experiments on pattern mining tasks with both a CP solver and a SAT solver show that using the incomparability condition during search significantly improves the efficiency of dominance programming and reduces (and often eliminates entirely) the need for post-processing to filter dominated solutions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.