As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
E-Commerce is one of business mediums to offer a variety of choices to consumers. The explosion of data and information lead to the use of machine learning models to predict and customize the product categorization from online stores. This paper presents a study to assess the performance of Hidden Markov Model (HMM) in classifying e-commerce products. There are two parameter estimation approaches used in evaluating the HMM which are Baum-Welch and Viterbi Training algorithms. The results show that Baum-Welch algorithm performed better than Viterbi Training algorithm in estimating parameters of HMM. Hence, the former algorithm provides a better parameter estimation for the HMM in the study.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.