

Gymnastics moves are complex and varied, needing precise technique and body coordination, which traditional biomechanics methods struggle to capture in detail. This study aims to look at and judge how well new motion capture and analysis technology works in gymnastics biomechanics. This study picks the kipping bar muscle up move and uses the IMU-based Xsens system and the GymAware RS unit power test system to finely look at how athletes do the move in terms of body position, power, work done by the body, and main upper limb joint movements. The study tested 8 male elite collegiate gymnasts, collecting movement data with Xsens and power data with GymAware RS unit. Results show the kipping bar muscle up takes 1.42 seconds, with a 1.13-meter shift of the body’s center and a peak speed of 3.40m/s. In terms of power, the peak output was 2772.96J/s, showing the need for explosive power and fast strength. Also, the total work done was 889.70J, showing the move’s efficiency and energy level. This study shows that new motion capture and analysis tech is effective in capturing complex gymnastics moves. The use of these techs not only expands the ways biomechanics can be studied but also helps in making training better and improving how efficiently moves are done.