As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In the education industry, the needs of online learning are significantly increasing. However, the web-based courses demonstrate higher dropout rates than traditional education courses. As a result, engaging students with data analysis is getting more crucial especially for distance learning. In this study, we analyze data on the daily learning status of students in order to predict the student’s dropout in online schools. Specifically, we trained a dropout prediction machine leaning model with 1) Basic attributes of students, 2) Progress of learning materials, and 3) Slack conversation data between students and teachers. The experimental results show that the accuracy rate of the machine learning model has reached 96.4%. As a result, the model was able to predict 78% of the students who actually dropped out of school. We also looked into feature importance by SHAP value to gain ML model interpretability.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.