As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In a complex manufacturing system such as the multistage manufacturing system, maintaining the quality of the products becomes a challenging task. It is due to the interconnectivity and dependency of factors that can affect the final product. With the increasing availability of data, Machine Learning (ML) approaches are applied to assess and predict quality-related issues. In this paper, several ML algorithms, including feature reduction/selection methods, were applied to a publicly available multistage manufacturing dataset to predict the characteristic of the output measurements in (mm). A total of 24 prediction models were produced. The accuracy of the prediction models and the execution time were the evaluation metrics. The results show that uncontrolled variables are the most common features that have been selected by the selection/reduction methods suggesting their strong relationship to the quality of the product. The performance of the prediction models was heavily dependent on the ML algorithm.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.