As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In Indian Population there is about 1 percent of the people are deaf and dumb. Deaf and dumb people use gestures to interact with each other. Ordinary humans fail to grasp the significance of gestures, which makes interaction between deaf and mute people hard. In attempt for ordinary citizens to understand the signs, an automated sign language identification system is proposed. A smart wearable hand device is designed by attaching different sensors to the gloves to perform the gestures. Each gesture has unique sensor values and those values are collected as an excel data. The characteristics of movements are extracted and categorized with the aid of a convolutional neural network (CNN). The data from the test set is identified by the CNN according to the classification. The objective of this system is to bridge the interaction gap between people who are deaf or hard of hearing and the rest of society.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.