As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Numerous online business sites empower the customers to create a product reviews along with feedback in the shape of ratings. This gives the organization work force a sign about their items’ remaining on the lookout, while likewise empowering individual customer to frame an assessment and help buy an item. As of late, Sentiment Analysis (SA) has gotten quite possibly interesting due to the potential business advantages of text analysis. One of the most important problems in confronting SA is the manner by which to remove feelings in the assessment, as well as how to identify counterfeit good reviews and negative surveys derived from assessment surveys. Besides, the assessment surveys acquired from clients can divided into two categories: positive and negative, which can be utilized by a shopper to choose an item. In this survey, we have thoroughly discussed about fake review detection of products as well as product rating by different SA techniques. Further, we have discussed the research direction in fake review detection and product rating.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.