As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Sentiment Analysis includes methods and techniques for businesses to understand and analyze customer reviews, feedback and opinion on a particular product or service. Sentiment Analysis uses Natural Language Processing (NLP) tools to analyze feelings or emotions, attitudes, opinions, thoughts, etc. behind the words. Sentiments such as positive, negative and neutral are associated with a particular product. Sentiment analysis is applicable in multi-domains such as customer feedback for a particular product, movie reviews, social and political comments. This survey basically focuses on different aspect-based word embedding models and aspect-based sentiment classification techniques, where the goal is to extract key features from the sentences and classify sentiment on entities at document level. Aspect Based Sentiment Analysis (ABSA) is a technique that concentrates not only the entire sentence but analyses key terms explicitly to predict the polarity as a whole. ABSA model accepts aspect categories and its corresponding aspect terms to generate sentiment corresponding to each aspect from the text corpus. This article provides a comprehensive survey on different word embedding models under CNN framework for aspect extraction and different machine learning techniques applicable for sentiment classification purpose.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.